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Abstract
Transport through two point-contacts in series, even with arbitrarily high
transmissions, can be modeled with rate equations if the rates are deduced from
the quantum mechanical current formula, which thus accounts for interferences
on the wavefunction level. An expression using Green’s functions giving the
current through a single contact is valid for evaluating the charging rates of
the enclosed island in the double-junction system, even in the case of coherent
coupling all over the island from lead to lead. We demonstrate that these
current rates for each junction can be rewritten as 2-products of the so-called
transfer Green functions, maintaining formal analogy to the single-junction
case. On the one hand this facilitates numerical calculations. On the other
hand, the form of the rate terms reveals how besides direct coupling across
one junction effective coupling between the involved and the remote lead
contributes to transfers across the regarded junction and how coherent loss
from the island across the other junction diminishes the rate. It is further
explained that for the double junction in the case of coherent coupling between
both contacts direct lead-to-lead transport adds current contributions; however,
interferences are expected to reduce the net current as compared to incoherent
mutual influence via the island charging only. Crossed Andreev reflection in
the superconducting state—within the premises of our model—cannot surpass
other transport processes such as to cause extra steps in current–voltage curves
or negative differential conductance.

PACS numbers: 72.10.Bg, 05.60.Gg, 02.90.+p

1. Introduction

Transport across an island of sufficiently small capacitance at low temperature usually exhibits
Coulomb blockade (CB) [1, 2], even if in contrast to tiny quantum dots with only few discrete
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Figure 1. A series of two point contacts with an island (I) between the left (L) and the right (R)
lead. A transport process is sketched as an example.

electron states the level spacing is negligible, which is the usual case for metallic islands.
Charging then does not influence the form of the density of states (DOS), but simply shifts
the DOS together with the Fermi level due to the electrostatic potential. The single-electron
transistor [3, 4] with tunnel junctions from the island to the leads is a well-studied device
in the normal as well as in the superconducting state. Taking into account sequential and
co-tunneling—in the superconducting state also including Andreev reflection and Cooper-pair
tunneling [5–7]—up to some order suffices to model setups with low-transmission junctions.
For contacts accommodating transport channels with arbitrary values of the transmission
in the range 0 . . . 1 (in units of the conductance quantum G0 = e2/h), throughputs of
multiple reflection processes can no longer independently be added and the current must
be calculated on a fully quantum-mechanical basis. Such point contacts can, for example,
be arranged with mechanically controllable break-junctions [8, 9]. In a setup with an island
coherence in transport through both junctions or multiple reflections extending over both
should be considered. Investigating transport, especially in the superconducting state, through
a contact series with one or both junction transmissions clearly out of the tunnel regime
is of interest for the following aspects: multiple Andreev reflection (MAR) effectively
means transport in multiple-charge packages. It is a subject under study, whether with an
island CB prevents MAR in a junction that would exhibit it as a stand-alone device [9].
Modeling is further important to deduce signs in current–voltage characteristics by which
to distinguish transport maintaining coherence across the island from incoherent coupling
between the two junctions. Our conclusion will, however, be that an ambiguity will hardly be
removed.

The premises of our model are the following: the island, left and right leads (figure 1)
are bulk reservoirs with the same DOS (assume same material for all three). There is an
energy-independent coupling amplitude tL across the left junction and an alike tR for the right
junction. (We restrict the problem to one transport channel per junction here1.) Coherence
is allowed in the sense that a transfer across one junction can be followed by one across
the other without relaxation on the island. (In the relaxed state we assume zero-temperature
occupation of the DOS.) The purpose of nevertheless treating the island as a bulk reservoir
(like the leads) is to also allow transport processes starting on the island in a relaxed state or
ending there to relax the charge carrier. (For simplicity we further assume that coherence of
transfers through different junctions is as strong as that of successive transfers across the same
junction. Later mixing our incoherent and coherent ansatzes to model partial coherence across
the island is a conceivable idea.) The varying electrostatic potential of the island with charging

1 A generalization of our so-called coherent model to several channels per junction is under work.
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is taken into account. Assuming a (quasi-particle) density of states—or better a corresponding
Green’s function g—for the reservoirs and a single-hopping amplitude t for each junction in
the superconducting state describes electron and hole transport including Andreev reflection
[13]. Cooper-pairs would have to be added as an independent transport mechanism only
intermingling with quasi-particle transfers via the island charging. Cooper-pairs are not yet
included in our calculations. In the normal state charge carriers are electrons (the model
requires electrons and missing electrons = holes, though).

The following sections will concentrate on the couplings across the two junctions.
However, keeping in mind that the leads are connected to a voltage source, to deal with
the non-equilibrium transport problem, Green’s functions are needed on the original site bases
L, I and R. We are not looking for eigenstates of a closed system. Although the application
discussed is quantum transport through a point-contact series, the main emphasize of this work
is on formal properties of Green’s functions, and most relations for them are given in detail.
The general problem of three reservoirs, one of which is coherently coupled to the other two,
might also be found in totally different applications.

2. Three-site Green’s and transfer functions

Corresponding to the three sites L, I and R the Hamiltonian can be written in a matrix form as

H =
⎛
⎝HLL σLI 0

σIL HII σIR

0 σRI HRR

⎞
⎠ acting on the wavefunction � =

⎛
⎝�L

�I

�R

⎞
⎠ ; (1)

HLL,HII and HRR are the Hamiltonians of bulk reservoirs as if no connections via the
junctions existed. gLL, gII and gRR denote the corresponding Green’s functions [12]. σ are
the couplings between sites established by the junctions. Then the advanced and retarded
Green’s functions of the complete system satisfy the Dyson equation:⎛
⎝GLL GLI GLR

GIL GII GIR

GRL GRI GRR

⎞
⎠ =

⎛
⎝gLL 0 0

0 gII 0
0 0 gRR

⎞
⎠

+

⎛
⎝gLL 0 0

0 gII 0
0 0 gRR

⎞
⎠

⎛
⎝ 0 σLI 0

σIL 0 σIR

0 σRI 0

⎞
⎠

⎛
⎝GLL GLI GLR

GIL GII GIR

GRL GRI GRR

⎞
⎠ . (2)

For the transport problem it is of advantage to work with T [11] instead of G defined through
Gσ = gT or equivalently σG = T g (without subscripts letters mean the respective 3 × 3
matrix). For clarity, these equations are now written out as full matrices because care must be
taken that for some components there is a sum of products on the left side:⎛
⎝GLIσIL GLLσLI + GLRσRI GLIσIR

GIIσIL GILσLI + GIRσRI GIIσIR

GRIσIL GRLσLI + GRRσRI GRIσIR

⎞
⎠ =

⎛
⎝gLLTLL gLLTLI gLLTLR

gII TIL gII TII gII TIR

gRRTRL gRRTRI gRRTRR

⎞
⎠ (3)

⎛
⎝ σLIGIL σLIGII σLIGIR

σILGLL + σIRGRL σILGLI + σIRGRI σILGLR + σIRGRR

σRIGIL σRIGII σRIGIR

⎞
⎠

=
⎛
⎝TLLgLL TLIgII TLRgRR

TILgLL TII gII TIRgRR

TRLgLL TRIgII TRRgRR

⎞
⎠ ; (4)
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T obeys the Dyson equation:⎛
⎝TLL TLI TLR

TIL TII TIR

TRL TRI TRR

⎞
⎠ =

⎛
⎝ 0 σLI 0

σIL 0 σIR

0 σRI 0

⎞
⎠

+

⎛
⎝ 0 σLI 0

σIL 0 σIR

0 σRI 0

⎞
⎠

⎛
⎝gLL 0 0

0 gII 0
0 0 gRR

⎞
⎠

⎛
⎝TLL TLI TLR

TIL TII TIR

TRL TRI TRR

⎞
⎠ . (5)

Note that some components of (5) will have two terms of the form σgT on the right side.
With full coherence a process from the island I can start off in any direction, no matter where
it is going to end. We note all nine component equations here and also the results from the
complementary Dyson equation T = σ + T gσ :

TLL = σLIgII TIL = TLIgII σIL

TLI = σLI + σLIgII TII = σLI + TLLgLLσLI + TLRgRRσRI

TLR = σLIgII TIR = TLIgII σIR

TIL = σIL + σILgLLTLL + σIRgRRTRL = σIL + TII gII σIL

TII = σILgLLTLI + σIRgRRTRI = TILgLLσLI + TIRgRRσRI

TIR = σIR + σILgLLTLR + σIRgRRTRR = σIR + TII gII σIR

TRL = σRIgII TIL = TRIgII σIL

TRI = σRI + σRIgII TII = σRI + TRLgLLσLI + TRRgRRσRI

TRR = σRIgII TIR = TRIgII σIR.

(6)

It does not matter whether T is obtained by a direct solution of (5) or the two-step procedure
described in [11]; it is the function satisfying (3), (4) and (5), relations which will be used
in the following manipulations. As a further preparation the constituting equation for G+−,
namely G+− = [1 + Grσ ]g+−[1 + σGa], has to be multiplied out in three-site space:⎛
⎝G+−

LL G+−
LI G+−

LR

G+−
IL G+−

II G+−
IR

G+−
RL G+−

RI G+−
RR

⎞
⎠ =

⎡
⎣
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ +

⎛
⎝Gr

LL Gr
LI Gr

LR

Gr
IL Gr

II Gr
IR

Gr
RL Gr

RI Gr
RR

⎞
⎠

⎛
⎝ 0 σLI 0

σIL 0 σIR

0 σRI 0

⎞
⎠
⎤
⎦

·
⎛
⎝g+−

LL 0 0
0 g+−

II 0
0 0 g+−

RR

⎞
⎠ ·

⎡
⎣
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ +

⎛
⎝ 0 σLI 0

σIL 0 σIR

0 σRI 0

⎞
⎠

⎛
⎝Ga

LL Ga
LI Ga

LR

Ga
IL Ga

II Ga
IR

Ga
RL Ga

RI Ga
RR

⎞
⎠
⎤
⎦.

(7)

In an exemplary way we here give the results for the two components needed later:

G+−
IR = Gr

II σILg+−
LLσLIG

a
IR + Gr

II σIRg+−
RR

(
1 + σRIG

a
IR

)
+
(
1 + Gr

ILσLI + Gr
IRσRI

)
g+−

II

(
σILGa

LR + σIRGa
RR

)
(8)

G+−
RI = Gr

RIσILg+−
LLσLIG

a
II +

(
1 + Gr

RIσIR

)
g+−

RRσRIG
a
II

+
(
Gr

RLσLI + Gr
RRσRI

)
g+−

II

(
1 + σILGa

LI + σIRGa
RI

)
. (9)

Remark that a component of G+− also contains contributions with the g+− at the site(s)
different from its own indices. The given G+−

IR/RI each have a term with g+−
LL. Primarily,

4



J. Phys. A: Math. Theor. 41 (2008) 375203 U Schröter and E Scheer

Figure 2. Illustrating the deduction (11) on the Keldysh contour.

g,G and T are functions of two time arguments; the σ describing the hopping between sites
have a time-dependent phase factor [10, 12, 13]. All expressions and equations written as
multiplications mean convolution-like integration over inner time arguments (τ will be used
for time variables.) When using Fourier representations, all the given relations become mere
algebraic equations with products of g,G and T as functions of a single frequency argument
each.

3. Charging rates

It will be necessary to evaluate expressions like G+−
RI σIR . Inserting (9) for G+−

RI and then
using (3) and (4) to replace G by T we obtain

G+−
RI σIR = gr

RRT r
RLg+−

LLT a
LIg

a
II σIR +

(
1 + gr

RRT r
RR

)
g+−

RRT a
RIg

a
II σIR

+ gr
RRT r

RI g
+−
II

(
1 + T a

II g
a
II

)
σIR

= gr
RRT r

RLg+−
LLT a

LR +
(
1 + gr

RRT r
RR

)
g+−

RRT a
RR + gr

RRT r
RI g

+−
II T a

IR. (10)

Some relations out of (6) have been used to get the last line. TRIgII σIR in the second term need
not have been contracted into TRR . This term shall be treated differently now. Equation (10)
is written in components in site space, but each T , g and σ still is a 2 × 2 matrix in eh-space.
Nevertheless, the trace of G+−

RI σIR in eh-space will finally be the only required quantity. As
cyclic permutation in matrix multiplication leaves the trace unchanged, σIR can be brought
in front. After (6), σIR + σIRgRRTRR , however, to be contracted into TIR misses the term
σILgLLTLR . This is therefore added and subtracted, and σIL of the subtracted again brought
to the end, where TRIgII σIL then simplifies to TRL (see also figure 2):

Tr
(
σIR

(
1 + gr

RRT r
RR

)
g+−

RRT a
RIg

a
II

)
= Tr

((
σIR + σILgr

LLT r
LR + σIRgr

RRT r
RR

)
g+−

RRT a
RIg

a
II − gr

LLT r
LRg+−

RRT a
RIg

a
II σIL

)
= Tr

(
T r

IRg+−
RRT a

RIg
a
II − gr

LLT r
LRg+−

RRT a
RL

)
(11)

We now explain why (10) and similar expressions give the transport rates we need and
how these get used in a master equation. Even with coherent transport through both junctions,
the current (we skip factor e for unit charge) when evaluated as seen from the left side

5
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[12] from〈
dρL

dτ

〉
=

〈[(HLL σLI 0
σIL HII σIR

0 σRI HRR

)
,

( 1 0 0
0 0 0
0 0 0

)
︸ ︷︷ ︸

ρL

]〉
=

〈( 0 −σLI 0
σIL 0 0
0 0 0

)〉
(12)

comes out as Tr
(
G+−

LI σIL −σLIG
+−
IL

)
, the identical expression to the single junction [13] (with

the right side named I instead of R). There are no additional terms like σLIσIRG+−
RL, although

G+−
RL exists. Nevertheless, in contrast to the incoherent model [10] interaction to the R-

reservoir is now contained in G+−
LI/IL.

〈 dρR

dτ

〉
gives an analogous result, of course. A stationary

state corresponding to a long-time measurement implies that the current (dc) is the same
through both junctions. One can prove that Tr

(
G+−

RI σIR − σRIG
+−
IR

) = 2 Re
{
Tr

(
G+−

RI σIR

)}
.

Furthermore, in the same sense that an expectation value like in (12) means taking the trace
in site space [12], in the superconducting state with electron and hole quasi-particles the trace
also has to be taken in electron–hole space. Calculating the time derivative of the charge on

the island as the commutator with the Hamiltonian, using the scheme (12) with ρI = ( 0 0 0

0 1 0

0 0 0

)

yields 〈
dρI

dτ

〉
= Tr

(
σLIG

+−
IL − G+−

LI σIL + σRIG
+−
IR − G+−

RI σIR

)
(13)

Naturally, transport rates through both junctions add for the island. Here, with in order to
model coherent interaction between the left and right junctions considering the whole system
in the quantum-mechanical ansatz (1), (13) comes as a direct result of Ehrenfest’s theorem.
In the incoherent model [10] adding charging rates from both junctions for the island is done
as part of setting up a classical rate equation. The result is formally identical to (13), the G+−

however stemming from solving respective 2×2 Dyson equations for each junction separately.
The island will change its potential with charging and at least for all cases of non-

identical junction transmissions this effect is mandatory for the establishment of a stationary
dc current flow. Different island charge states behave like different reservoirs [10]. This
picture is the same for the incoherent and the coherent model. Setting up the rate equation
�̇P = R · �P = 0 and solving for the charge-state probabilities �P = (Pn) therefore stays
the same procedure. As explained in [10], doing manipulations like (10) with island charge
indices requires treating ee- and hh-parts of G+−

RI σIR separately, and if, for example, there
is σn+1 n

IR for an electron hopping, moving this σ from the end to the beginning of a product
changes the outer charge index from n to n + 1. An inner charge index n2 is summed over
in all products like, for example, g

r;n n
RR T

r;n n2
RL g

+−,n2 n2
LL T

a,n2 n
LR . In (13) considering the transfers

across the left junction that increase the island charge to n + 1 compared to it being n when
the hopping quasi-particle is in the left lead before or after, picks the contributions with
σ of electron type. In

(
σn n+1

LI G
+−,n+1 n
IL

)
ee

− (
G

+−,n n+1
LI σ n+1 n

IL

)
ee

the second term including
the minus sign with the charge indices reversed together with the site indices indeed turns
out to be the complex conjugate of the first term. Analogously, there are the hole transfers(
σn+1 n

LI G
+−,n n+1
IL

)
hh

− (
G

+−,n+1 n
LI σ nn+1

IL

)
hh

that also change the island charge between n and
n + 1. These terms are to be taken with opposite sign for the opposite charge of holes as
compared to electrons. The electron and hole contributions have to be taken together [10]
before determining where the net result is to be put in the rate matrix. If it is positive it is
added at a place meaning that transfers across the left junction will increase the island charge
to n + 1 if the island is found in state n. If it is negative its absolute value is added to the entry
meaning decrease to n will happen if the island is found in state n + 1. Only one way will

6



J. Phys. A: Math. Theor. 41 (2008) 375203 U Schröter and E Scheer

processes take place across a junction (we regarded the left here), with a frequency further
depending on either P(n) or P(n + 1). Our rates already constitute net values according to
backreflections across a channel playing between the same n and n + 1. A product with a σ

with I associated with n involves the DOS of the island state n as if that remained static during
the single transfer. The same holds for the n + 1 island state DOS for the terms where n + 1
is with I on σ . L (or R) has fixed Fermi level, its DOS is independent of the island charge.
Counterbalancing the n → n+ 1 rate through a channel by the n+ 1 → n rate as well as taking
electrons and holes together before entering the value into the rate matrix in our model has
precisely the effect of ensuring enough energy to be gained by the electron or hole passing
the voltage over a junction to change the island potential with the transfer. In decharging
it also has to be guaranteed that the island DOS does not shift so much during transfer as
to prevent the off-coming charge from finding an appropriate level in a lead. As a marginal
consistency check, we briefly mention that with setting up the rate matrix in the described way
the correct behavior in current–voltage characteristics is reproduced in the well-known limit
of low transmission and vanishing superconductor gap. In the sense whether there will be a
rate to bring the island charge up from n to n + 1 or down from n + 1 to n, transfers across
the right junction are independent of those through the left. Even with coherent coupling
across the island the transport channels from both junctions do not merge into an effective
one from lead to lead, but the remaining two channels are coupled together by the island. The
two parts in (13), by the way, represent expectation values on their own, namely −〈dρL/dτ 〉
and −〈dρR/dτ 〉. Therefore despite the ansatz with hoppings through both junctions in one
Hamiltonian, the rate equation is set up from transfers across the left and right junctions treated
separately in the coherent model [14] in the same way as in the incoherent model [10].

There is no problem in taking the island charge as a good quantum number [10]. However,
there may still be some subtlety about the kind of simultaneousness of transport processes
allowed. Each single hopping σ counted in terms à la (13) can be part of a multiple (Andreev)
reflection. The preceding and following hoppings in these processes may be only virtual. The
island does not actually need to be charged to the other states involved apart from n and n + 1.
Consequently, from a chain of single hoppings in a MAR each one need not really happen
exactly as often as all others. For understanding one should think of the n ↔ n + 1 charging
rate as expanded into the sum of the rates for all MAR processes that contain a single hopping
between states n and n+1 through a junction. In determining whether this rate—or again think
of each process contribution in it separately—is positive, zero or negative, the possibility of
each such MAR process around the single n ↔ n + 1 hopping is checked instantaneously, that
is with the MAR process determining all island states before and after exclusively by its own.
All these energy levels have an influence on the calculated amplitudes of that rate contribution.
Evaluating the amplitude of a charging step in a process as if exclusively this process were
happening in the system is based on the physical conception to keep coherence in every way
unbroken during the process2. For simplicity we just spoke of rate contributions from different
processes; section 4 will, however, illustrate that, with respect to multiple reflection processes,
at the basis amplitudes are evaluated and then interference between processes is included in
charging rates. Due to the effective decomposition of multiple (Andreev) reflection processes
into single steps for evaluating charging rates, the rate matrix is quite simple with entries only
for transitions n → n − 1, n → n, n → n + 1.

The actual evaluation of terms such as (10) and (11) is performed using Fourier
representations [10, 13, 14]. gr/a/+−(τ, τ ′) = 1

2π

∫
dω e−iωτ eiωτ ′

gr/a/+−(ω) with g(ω)

2 Allowing other transport processes change the island charge during the regarded MAR would also present an ansatz
not principally to be rejected, however, be based on another conception as to how actions of different quasi-particles
from a reservoir are linked together. This idea is planned to be developed elsewhere.
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analytically given functions [12, 13], the same for all reservoirs. g cannot change the island
charge, it is always gnn:

T
r;n1 n2
RI (τ, τ ′) =

∑
k

∑
p

∫
dω

2π
e−iωτ e−ikAτ e−imBτ e−ipCτ eiωτ ′

T
r;n1 n2
RI,kp (ω) (14)

=
∑

k

∑
p

∫
dω

2π
e−iωτ eikAτ ′

eimBτ ′
eipCτ ′

eiωτ ′(
T

a;n2 n1
IR,kp (ω)

)†
. (15)

Expressions for advanced T and other space indices are analogous. The second line indicating
the link between T

r/a;n1 n2
ij and T

a/r;n2 n1
ji is of practical importance. The dagger † means

complex conjugation as well as for the superconducting state transposition of 2×2 matrices in
electron–hole space with giving an extra minus sign to the off-diagonal eh- and he-components.
k and p run over all possible integer combinations with the restriction that n2 −n1 = k+p. (We
explicitly write the double sum, because we intend to take n2 as the dependent variable later
on.) A and C designate the voltage drops multiplied by e and divided by h̄ over the left and the
right junctions, respectively, in case of a neutral island. This division of the voltage applied
between the left and the right lead is determined by the ratio of the capacitances associated
with the two junctions. The effect of a gate voltage in case of an additional electrode only
capacitively coupled to the island can be included [10]. B denotes twice the island charging
energy divided by h̄ and the integer m is a function of k, p and n1. Using (11) in (10) means
that G

+−,n n+1
RI σ n+1 n

IR consists of four terms. We use the Fourier representation of the kind (15)
for T r

RL and the kind (14) for T a
LR in g

r,n n
RR T

r,n n2
RL g

+−,n2 n2
LL T

a,n2 n
LR , (15) for T r

RI and (14) for T a
IR in

g
r,n n
RR T

r,n n2
RI g

+−,n2 n2
II T

a,n2 n
IR , (14) for T r

IR and (15) for T a
RI in T

r,n+1 n2
IR g

+−;n2 n2
RR T

a,n2 n+1
RI g

a,n+1 n+1
II ,

(14) for T r
LR and (15) for T a

RL in g
r,n n
LL T

r,n n2
LR g

+−,n2 n2
RR T

a,n2 n
RL . We arbitrarily chose the island

charge indices on σIR as n + 1 and n, which makes it an electron transfer, and consequently
the complete product must be of ee-type. Fixing σ as e-type, the inner charge index could
as well be taken as being summed over because an electron transfer only allows I to appear
with charge index n + 1: G

+−,n n+1
RI σ n+1 n

IR = (
G

+−,n n2
RI σ

n2 n
IR

)
ee

. The four products in the text
above have been noted with the respective outer island charge index n or n + 1. We understand
that finally the ee-part is taken, although for inner eh-indices all possible combinations get
summed over. We give the treatment of the first term as an example. Rate terms require
G+−(τ, τ ′)σ (τ ′) of two identical time arguments, that is τ = τ ′ [12]. Charging rates were
expressed as expectation values (equation (12)), which are, of course, taken for the state of
the system at time τ . Working in the interaction picture here, G+− refers that state back to
infinitely long ago when the coupling between L, I and R was turned on. G+− (with one index
L or R and I the other) describe all the rest of the circuit on the Keldysh contour except the
rightmost σ on the time axis (see figure 2). G+− is of (τ, τ ) to frame σ(τ). The definition (7)
of G+− was usefully made for general (τ, τ ′) as all other Green’s functions Gr/a and gr/a/+−

are of two time arguments, too. The first of the four rate contributions becomes:∑
n2

∫
dτ1 dτ2 dτ3 g

r,n n
RR (τ, τ1)T

r,n n2
RL (τ1, τ2)g

+−,n2 n2
LL (τ2, τ3)T

a,n2 n
LR (τ3, τ )

=
∑
n2

∫
dτ1 dτ2 dτ3 dω dω1 dω2 dω3

∑
k,p

k+p=n2−n

∑
k′ ,p′

k′+p′=n−n2

e−iωτ eiωτ1g
r,n n
RR (ω)

· e−iω1τ1 eikAτ2 eimBτ2 eipCτ2 eiω1τ2
(
T

a,n2 n
LR,kp(ω1)

)†
e−iω2τ2 eiω2τ3g

+−,n2 n2
LL (ω2)

· e−iω3τ3 e−ik′Aτ3 e−im′Bτ3 e−ip′Cτ3 eiω3τ T
a,n2 n
LR,kp(ω3). (16)
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Recognizing transcriptions of δ-distributions eliminates all but the ω-integral and requires
ω1 = ω,ω2 = ω + kA + mB + pC,ω3 = ω + (k − k′)A + (m − m′)B + (p − p′)C. The
remaining phase factor is e−iωτ eiω3τ . Only the dc part counts for island charging, which further
imposes ω3 = ω. As A,B,C are assumed incommensurate3, this implies k′ = k and p′ = p,
which in turn automatically ensures m′ = m. Summing over k and p independently without
restriction is equivalent to summing over n2 (see (17) for the result). The purpose of the careful
choice of Fourier representations for the T was in all terms to make the remaining frequency
ω to be integrated over the argument of both T-factors as well as the argument of gRR , be it the
r- or the +−-function. The two T-factors in each product actually become one and the same
function, but for our special †-transposition. This property is convenient to keep the effort
to calculate T-functions [11] as low as possible. Having gRR(ω) in all of them is to ensure
consistency between the four terms from (10) and (11), respectively, listed in the text above.
With that recipe identical integration boundaries on all four terms—an actual calculation
requires finite limits—guarantee that contributions tending towards non-zero constant values
for ω → ±∞ cancel on the correct half-open intervals (see the next section). Adding the hole
contribution, the complete rate to change the island charge between n and n + 1 by a transfer
through the right junction is

2 Re
{(

σRIG
+−
IR

)n+1
hh

+
(
G+−

RI σIR

)n

ee

)}
= 2 Re

(
T r

RI g
+−
II T a

IRga
RR

)n+1
hh

+
(
gr

II T
r
IRg+−

RRT a
RI

)n

hh
+
(
T r

RLg+−
LLT a

LRga
RR

)n+1
hh

− (
T r

LRg+−
RRT a

RLga
LL

)n+1
hh

+
(
gr

RRT r
RI g

+−
II T a

IR

)n

ee
+
(
T r

IRg+−
RRT a

RIg
a
II

)n+1
ee

+
(
gr

RRT r
RLg+−

LLT a
LR

)n

ee
− (

gr
LLT r

LRg+−
RRT a

RL

)n

ee
= 2 Re

∫
dω

∑
p,k

{
[(

T
n+1−k−p n+1
a,IR,kp

)†
g+−

II (ω′)T n+1−k−p n+1
a,IR,kp ga

RR

]
hh

m=−(k+p)(n+1−k−p)−(k+p)2/2+1/2

+
[
gr

II (ω
′)T nn+k+p

r,IR,kp g+−
RR

(
T

nn+k+p

r,IR,kp

)†]
hh

m=−(k+p)n−(k+p)2/2+1/2

+
[(

T
n+1−k−p n+1
a,LR,kp

)†
g+−

LL(ω′)T n+1−k−p n+1
a,LR,kp ga

RR

]
hh

m=−(k+p)(n+1−k−p)−(k+p)2/2

− [
T

n+1 n+1+k+p

r,LR,kp g+−
RR

(
T

n+1 n+1+k+p

r,LR,kp

)†
ga

LL(ω′)
]
hh

m=−(k+p)(n+1)−(k+p)2/2

+
[
gr

RR

(
T

n−k−p n

a,IR,kp

)†
g+−

II (ω′)T n−k−p n

a,IR,kp

]
ee

m=−(k+p)(n−k−p)−(k+p)2/2+1/2

+
[
T

n+1 n+1+k+p

r,IR,kp g+−
RR

(
T

n+1 n+1+k+p

r,IR,kp

)†
ga

II (ω
′)
]
ee

m=−(k+p)(n+1)−(k+p)2/2+1/2

+
[
gr

RR

(
T

n−k−p n

a,LR,kp

)†
g+−

LL(ω′)T n−k−p n

a,LR,kp

]
ee

m=−(k+p)(n−k−p)−(k+p)2/2

− [
gr

LL(ω′)T n n+k+p

r,LR,kp g+−
RR

(
T

nn+k+p

r,LR,kp

)†]
ee

m=−(k+p)n−(k+p)2/2

}
(17)

m-values are indicated with each term (with k even and p odd on TIR and k and p both odd on
TLR,m is always integer). ω′ means ω + kA + mB + pC in each case and left out arguments
of g- and T-functions are ω. The same formula with indices L and R as well as voltage drops
A and C interchanged, holds for charging rates through the left junction. For the normal

3 Even if there might be resonances when Fermi levels of a lead and an island charge state match, these would have
to have some finite width. In that sense transfer functions, charging rates and currents should be continuous functions
of the voltages between each lead and the island, and also of these in relation to the charging energy. There is no
restriction in excluding multiples of one another amongst A, B and C, because such a very special situation is already
destroyed by any infinitesimally small parameter change. Singularity matching is included as the limiting case of
just incommensurate voltages. (Eventually later including δ-peak like DOS-contributions for Cooper pairs may again
require some care at this point.)
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state the complete expression (17) with ee- and hh-part—in the incoherent model [10] the
respective formula without the TLR-terms—in the limit � → 0 must be used. Comparison to
the single-electron transistor in the low transmission limit reveals that the ee-part alone would
not yield the energetically correct charging thresholds. (With the island potential changing
with charging even for � = 0 the hh-part does not simply double the ee-part.)

The form of the rates (17) suggests the following interpretation: coherence shows itself in
the fact that the right lead effectively couples [15] to the left lead as it does to the island, although
to the former it is only indirectly connected. Terms

(
gr

RRT r
RI g

+−
II T a

IR

)n

ee
and

(
gr

RRT r
RLg+−

LLT a
LR

)n

ee

as well as
(
T r

RI g
+−
II T a

IRga
RR

)n+1
hh

and
(
T r

RLg+−
LLT a

LRga
RR

)n+1
hh

, respectively, look the same but for I
replaced by L. Charge carriers having originated [12] in L and I can on their course both be those
being transported across the right junction. Terms

(
T r

IRg+−
RRT a

RIg
a
II

)n+1
ee

and
(
gr

II T
r
IRg+−

RRT a
RI

)n

hh

count hoppings of carriers stemming from the right lead, however through both junctions. For
the rate to charge the island through the right junction transfers of those carriers across the
left,

(
gr

LLT r
LRg+−

RRT a
RL

)n

ee
and

(
T r

LRg+−
RRT a

RLga
LL

)n+1
hh

, have to be subtracted (see also figure 2).

4. Interference correction and crossed Andreev reflection

4.1. Multiple electron and hole reflection

It is the virtue of the Green’s functions method that interaction terms do not get
cut at a finite order like in a perturbation approach. However, not for numerical
calculations, but for an intuitive interpretation of the results from our model [14], for
enlightening the chimerical issue of choosing frequency arguments and integration boundaries
consistently, and also for taking up the cudgels for the implementation of the rate formula
(17), an analytic development of some low-order contributions proves indispensable.
Lowest-order terms with just replacing each T in (17) by a single σ can only stem
from

(
T r

RIg
+−
II T a

IRga
RR

)n+1
hh

,
(
gr

II T
r
IRg+−

RRT a
RI

)n

hh
,
(
gr

RRT r
RI g

+−
II T a

IR

)n

ee
and

(
T r

IRg+−
RRT a

RIg
a
II

)n+1
ee

.
Lowest orders in TLR and TRL are σLIgII σIR and σRIgII σIL, respectively, and thus the
lowest-order contributions in (17) from the terms with TLR/RL contain 4σ , while the leading
ones out of terms with TIR/RI are products with 2σ . The 2σ -parts are exactly the same as in
the incoherent model [10] and the condition that such transfers across the right junction being
single hoppings in themselves—holes and electrons taken together—change the island charge
from n to n + 1 is 2C > 4� + 4nEC and 2C > (4n + 2)EC . For decharging from n + 1 to
n conditions are 2C < 4(n + 1)EC − 4� and 2C < (4n + 2)EC . Voltages A,B and C are
understood to be multiplied by e when compared to energies EC and �.

4σ -terms out of
(
T r

IRg+−
RRT a

RIg
a
II

)n+1
ee

and
(
gr

RRT r
RI g

+−
II T a

IR

)n

ee
mean developing one T into

a product σgσgσ and replacing the other by a single σ . For brevity, only the electron terms
from (17) will be written out. The reader can easily infer the treatment of the hole terms. We
shall first look at 4σ terms only involving the I- and R-index and without AR:

(1) g
r,ee
RR σnn+1

RI,e g
r,ee
II σ n+1 n

IR,e g
r,ee
RR σnn+1

RI,e g
+−,ee
II σ n+1 n

IR,e → g
r,ee
RR ()g

r,ee
II ()g

r,ee
RR ()g

+−,ee
II ()

(2) g
r,ee
RR σnn+1

RI,e g
+−,ee
II σ n+1 n

IR,e g
a,ee
RR σn n+1

RI,e g
a,ee
II σ n+1 n

IR,e → g
r,ee
RR ()g

+−,ee
II ()g

a,ee
RR ()g

a,ee
II ()

(3) σ n+1 n
IR g

r,ee
RR σn n+1

RI,e g
r,ee
II σ n+1 n

IR,e g
+−,ee
RR σnn+1

RI,e g
a,ee
II → g

r,ee
RR ()g

r,ee
II ()g

+−,ee
RR ()g

a,ee
II ()

(4) σ n+1 n
IR g

+−,ee
RR σn n+1

RI,e g
a,ee
II σ n+1 n

IR,e g
a,ee
RR σnn+1

RI,e g
a,ee
II → g

+−,ee
RR ()g

a,ee
II ()g

a,ee
RR ()g

a,ee
II ().

(18)

Here is the recipe to obtain the frequency arguments of the two g not occurring in (17):
understanding that all ω and τ (except τ without index) are integrated over, writing σ

explicitly and replacing the g by their Fourier representations with initially unknown frequency
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Figure 3. Products from terms (18) with n = 0. The functions are shifted vertically. Refer to
figure 9 (appendix) for zero levels and for distinguishing Re g and Im g.

arguments except for the gRR(ω) from (17), the first line of (18), for example, translates into:

e−iωτ eiωτ1g
r,ee
RR (ω)tR e−iCτ1 ei(n+1)Bτ1 e−iω1τ1 eiω1τ2g

r,ee
II (ω1)tR eiCτ2 e−i(n+1)Bτ2

× e−iω2τ2 eiω2τ3g
r,ee
RR (ω2)tR e−iCτ3 ei(n+1)Bτ3 e−iω3τ3 eiω3τ g

+−,ee
II (ω3)tR eiCτ e−i(n+1)Bτ .

(19)

Recognizing δ-distributions, which leave only the ω-integration, then enforces ω1 =
ω −C + (n + 1)B, ω2 = ω1 + C − (n + 1)B = ω and ω3 = ω(2) −C + (n + 1)B. The remaining
phase exponentials in (19) then cancel. On the right-hand side of (18) we omitted the factor t4

R

in all lines. The voids for the arguments have to be filled with ω for all gRR and ω−C+(n+1)B

for all gII . Now we draw the g-functions appearing on the right-hand side of (18) (figure 3).
Under the plot we note for each interval where the product is real, whether it is positive or
negative. The plot is only shown for the first of the four terms from (18), the sign of the products
is noted for all of them. Even if a term in an interval has opposite sign from term No. 1,
due to the unique shape of the g-functions, each term at a fixed frequency ω produces the
same absolute value. Most important is the fact that in the ω-integration the parts from
the outermost half-open intervals cancel. This is essential for contributions without AR as
the g-products tend to finite values for ω → ±∞. The products can have real non-vanishing
values inside a 2�-interval where two g-functions are centered; however, contributions cancel
each other here. Drawn for the case that C − 2EC > 0 and for non-overlapping 2�-intervals
the middle interval produces a negative rate. Figure 3 is drawn for a different case from the one
we usually regard, namely the applied voltage poled the other way such that, here compared
to figure 5, the Fermi level of the right lead lies above that of the involved island state. In that
situation the island should be charged up by electrons coming from the right and holes going
to the right. The respective aforementioned 2σ rate contribution is indeed positive. Here we
see the next-order correction to that, which has opposite sign (see the third term in (22) as
compared to the first). (Rate contributions are not and must not be separated into different
orders of processes when entered into the rate matrix.) The 2σ -terms have their g-functions
centered at the same frequencies as the kind of 4σ -terms from (18) and figure 3 [10]. The
electron contribution has the non-zero center frequency at C − (n + 1)B, whereas the hole
part has it at −C + nB. Of the given conditions for single particle hopping 2C > 4� + 4nEC

11
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or 2C < 4(n + 1)EC − 4� refer to the middle interval between the two �-gaps appearing at
certain voltages in such ways that I is charged up by hole transfers and decharged by electron
transfers, respectively. −C + nB and C − (n + 1)B can fall on the same side of zero. Then,
if existing, middle intervals give contributions of opposite sign for electrons and holes. At
2C = (4n + 2)EC these middle intervals become of equal length and then their contributions
cancel. Expressed in a level diagram this means that the single-particle charging rate from n
to n + 1 across a junction changes sign when that lead’s Fermi level is at the height midway
between the island’s n and n + 1 levels. These explanations were just given to review the
illustration of rate contributions as g-function plots and their connection to energy ranges in
the level diagram using the most simple example.

All the more interesting are the 4σ -contributions containing gRR and gLL at the same
time. We first look at those without AR and in an exemplary way this time take those from
the hole parts of (17). From

(
T r

RLg+−
LLT a

LRga
RR

)n+1
hh

and −(
T r

LRg+−
RRT a

RLga
LL

)n+1
hh

there are:

(1) σ n+1 n
RI,h g

r,hh
II σ n n+1

IL,h g
+−,hh
LL σn+1 n

LI,h g
a,hh
II σ n n+1

IR,h g
a,hh
RR → g

r,hh
II ()g

+−,hh
LL ()g

a,hh
II ()g

a,hh
RR ()

(2) −σn+1 n
LI,h g

r,hh
II σ nn+1

IR,h g
+−,hh
RR σn+1 n

RI,h g
a,hh
II σ n n+1

IL,h g
a,hh
LL → −g

r,hh
II ()g

+−,hh
RR ()g

a,hh
II ()g

a,hh
LL ().

We recall that in the coherent model TRI/IR contain backreflections to the left lead and thus
(gr

II T
r
IRg+−

RRT a
RI )

n
hh and (T r

RI g
+−
II T a

IRga
RR)n+1

hh further contribute:

(3) g
r,hh
II σ nn+1

IL,h g
r,hh
LL σn+1 n

LI,h g
r,hh
II σ n n+1

IR,h g
+−,hh
RR σn+1 n

RI,h → g
r,hh
II ()g

r,hh
LL ()g

r,hh
II ()g

+−,hh
RR ()

(4) g
r,hh
II σ nn+1

IR,h g
+−,hh
RR σn+1 n

RI,h g
a,hh
II σ n n+1

IL,h g
a,hh
LL σn+1 n

LI,h → g
r,hh
II ()g

+−,hh
RR ()g

a,hh
II ()g

a,hh
LL ()

(5) σ n+1 n
RI,h g

r,hh
II σ n n+1

IL,h g
r,hh
LL σn+1 n

LI,h g
+−,hh
II σ nn+1

IR,h g
a,hh
RR → g

r,hh
II ()g

r,hh
LL ()g

+−,hh
II ()g

a,hh
RR ()

(6) σ n+1 n
RI,h g

+−,hh
II σ nn+1

IL,h g
a,hh
LL σn+1 n

LI,h g
a,hh
II σ n n+1

IR,h g
a,hh
RR → g

+−,hh
II ()g

a,hh
LL ()g

a,hh
II ()g

a,hh
RR ().

(20)

Having fixed the argument of the gRR from (17) to ω in all six terms, the argument of all
gRR is ω, all gLL are taken of ω−A+C and all gII of ω+C−nB. A factor t2

Lt2
R for two hoppings

across each of the junctions was omitted in noting the terms on the right. Contributions 2
and 4 cancel, the other four are sketched in figure 4 for n = 0. For illustration we chose the
easiest situation where the 2�-intervals around 0,−C and A − C are on the ω-axis in that
order and do not overlap. (For the case that the neutral island state n=0 is situated between
the left and the right lead in electrostatic potential, in our model A is a positive quantity and C
a negative one. n = 0 is the island state involved in the example here.) In figure 4 the middle
2�- and the two neighboring intervals give non-vanishing contributions. The net value from
the left interval has opposite sign from the other intervals. For interpretation contributions are
better taken as a negative one over the whole range canceled by a twice as large positive one
in the left interval. Figure 5 displays these in the energy-level diagram. In the entire range
between the superconductor gaps of the leads holes can go from filled states right to empty
ones left. The first half across the right junction of this transition intermittently changes the
island charge by one unit, even if the hole does not find a state to relax into on the island. The
charge carrier can travel through the island at energies inside or outside the gap. The only
condition here is that the lead gaps do not overlap, that is a voltage greater than 2�/e. Despite
the applied voltage bridging two superconductor junctions, only once 2�/e is needed. If there
is an energy range between the gaps of the island state involved and the right lead, there are
other transport processes in this interval the interference of which is of the same order. (For an
intensity of the hole transfer from lead to lead the product of both junction transmissions has
to be squared.) Between the right lead and the island, single hole transfer can interfere with
a hole transfer extended by a forth- and backhopping to the left lead, nevertheless ending on
the island. Hole transfers onto the island decrease the island charge (counted in electrons) and
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Figure 4. Products from terms (20) for n = 0.

Figure 5. Transport processes behind terms (20).

therefore their contributions to n → n + 1 charging rates come out negative. The interference
with the process with backreflection from the left lead we find to be destructive to single hole
transfer across the right junction as well as from lead to lead. Its contribution to the charging
rate has opposite sign. Having nothing to do with AR, this phenomenon is equally present in
the normal state or � → 0 limit of our model. In this case it is possible to calculate transfer
functions [11] analytically. They turn out to be energy independent, and from their Dyson
equation in frequency space one gets (separation into e and h is not necessary here)

T
r/a,N

LI/IL = tL

1 + t2
L + t2

R

, T
r/a,N

RI/IR = tR

1 + t2
L + t2

R

, T
r/a,N

LR/LR = tLtR

1 + t2
L + t2

R

(21)

Factors i need not be cared about, because they get canceled by complex conjugates in rate
terms, anyway. (The first two quantities should be compared to the stand-alone junctions or
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the incoherent case where we would have the greater values TLI/IL = tL
1+t2

L

and TRI/IR = tR
1+t2

R

.)
The intensity for transfers between the right lead and the island in an energy interval with
respective filled and empty states is thus proportional to(

tR

1 + t2
L + t2

R

)2

= t2
R−2t2

Lt2
R − 2t4

R ± · · · (22)

The intensity for coherent transfers between the right and left leads is determined by(
tLtR

1 + t2
L + t2

R

)2

= t2
Lt2

R − 2t2
Lt4

R − 2t4
Lt2

R ± · · · (23)

Even though each junction transmission, that is TLI/IL or TRI/IR , is already renormalized in a
way to also take into account multiple reflections across the other junction, coherence over the
whole system further means—besides transport across each junction—the presence of direct
transport from lead to lead. The latter then gets broken up into two parts when considering
the electrostatical island charging, though. The addition of contributions of both kinds as
described by (22) and (23) applies to the superconducting state, too, as already discussed with
rate terms (17). The dark grey range in figure 4 corresponds to the bold-faced term in (22),
the light grey range to the first term in (23). The developments confirm the relative sign of
the terms. The analogous electron transfer processes to (20) can be illustrated in an image
like figure 5 involving the n + 1 island state. In the normal state, where T-functions and rate
terms can be calculated in closed forms, for the special case θ1 = θ2 = 1 or tL = tR = 1
(see [12, 14] for conversion between t and θ ) (22) and (23) give equal values. Therefore
the size of the energy intervals where transport from filled to empty states is possible alone
decides about the direction of net charge flows. We now consider the symmetric case with the
neutral island’s Fermi level midway between those of the leads and such a low voltage that
the middle (0 ↔ 1) between the n = 0 and n = 1 states is still above the left Fermi level.
Electron-like charges from below that middle level and above the left level flow from I to L.
Taking that middle level comprises the effects from electron and hole terms for 0 ↔ 1 charge
changes of I into a single picture [10]. Charges between the L and R Fermi levels can travel
from L to R, intermittently charging I from 0 to 1. In electron units holes going from R to
L are counted as negative charges going from L to R the same as electrons. The condition
that the interval between the L and R Fermi levels be larger than the one above it with flow in
opposite direction reads eV > EC − 1

2eV or eV > 2
3EC (figure 6). In contrast to figures 3–5

and the related discussions we here compare complete rate terms including processes of all
order. In the normal state these are easily evaluated with the analytically known T-functions;
without eh-conversion from AR only k and p equal to 0,±1 appear. Decharging to the
right is obviously no problem with R below all other levels in figure 6. This proves that in
our model the earliest possible current onset is at eV = 2

3EC . A Coulomb blockade effect
is still felt despite coherent transport from lead to lead contributing. For other cases than
θ1 = θ2 = 1 weight factors enter the counterbalancing of energy interval lengths and the
current onset threshold depends on the transmissions. In the incoherent model, in normal state
identical to orthodox theory, no current can flow up to eV = 2EC , which is the well-known
Coulomb blockade phenomenon. From figure 5 we learn that it depends on the position of
the involved island charge state whether direct lead-to-lead transport can enhance a charging
rate—and thus eventually the current—as compared to the setup with merely incoherently
coupled junctions. An easy rule when the intervals from figure 4, that is terms (20), together
with the corresponding electron terms will give a positive or negative rate contribution cannot
be given. A part in the current which increases linearly with voltage already in the subgap
range and over a scale much larger than EC is indeed observed if the charging energy is rather
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Figure 6. Calculated IV -characteristics in normal state for fully open channels in both junctions
as well as an example with different transmissions. Results from the incoherent model [10] added
for comparison. Inset: for the neutral island in the middle between the lead Fermi levels (equal
junction capacitances, no gate, as for all curves here) and transmissions θ1 = θ2 = 1 intervals with
charge flow in opposite directions are compared in order to get the voltage threshold for charging
I from 0 to 1 across the left junction to become possible.

small compared to the gap, see the examples in [14], and is associated with direct lead-to-lead
transport.

4.2. Lowest-order Andreev reflection

4σ -terms with AR only between the island and one lead have been presented in [10]. Here we
shall analyze the lowest-order AR terms inherent to the coherent model, that is those involving
all three sites. Again, only those from (17) counted as an electron transfer, that is those with
outer index e, are written in detail in an exemplary way.
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(24)

Terms 2 and 3 cancel. Like in the examples before for the numerical calculation we rest with
products of four g-functions, again to be multiplied by t2

Lt2
R here. The argument is ω for

gRR, ω − A − C + 2(n + 1)B for gLL and ω − C + (n + 1)B for gII . All Andreev reflections
in these terms happen on the island. Having fixed the outer charge index to n and the outer
particle index to e you could think that, for example, from

(
gr
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LLT a
LR

)n

ee
there could

be another possible term, namely g
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RR σn n−1
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II σ n−1 n
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IR,e . But writing
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(a) (b)

(c) (d)

Figure 7. (a) Signs of products from terms (24). (b) Crossed AR in island state n = 1 with electron
transfer to R. (c) Interference of single electron transfer with that preceded by a hole backreflection
to the left lead and AR on I in the same interval as crossed AR from (b). (d) Another interval
where the process from (c) is possible. The image of the left gap mirrored at the island Fermi level
determines interval boundaries here.

out phase factors the way we showed in (19) it is noted that the remaining phase with τ

does not vanish. This 4σ -combination is not a dc contribution. Mirroring at the left Fermi
level and then at the right—mirroring is what AR means in the energy-level diagram—cannot
lead back to the initial energy level except for zero applied voltage. For the remaining four
terms of (24) an overview on signs of their contributions in the different intervals is drawn in
figure 7(a). Figures 7(b)–(d) give the interpretation in the energy-level diagram. Crossed AR
in the island n = 1 state, regarded as an example and contributing an electron transfer to R
to decharge the island, is possible at all energy levels above the gap of R that mirrored at the
n = 1 island Fermi level come to lie above the gap of L (figure 7(b)). This is the negative
contribution from figure 7(a) (interest in the decharging process is an appropriate point of
view here). However, there is a twice as large opposite contribution to the rate in that same
interval from the single electron transfer interfering with an electron transfer preceded by the
backreflection of a hole from the left lead (figure 7(c)). And there may be another interval,
in which the latter process takes place (figure 7(d)). These are the positive contributions from
figure 7(a). (The interference process does not exist where the hole reflection would fall inside
the gap left—even if no real state is required here—a property that can only be deduced from
g-function plots. Energy considerations and level plots alone would not suggest this detail.)
Again, the process sketched in figure 7(b) belongs to the kind associated with the bold-faced
term in (23), those from figures 7(c) and (d) to the bold-faced term in (22). In contrast to
the direct lead-to-lead transport discussed earlier, crossed AR is more than counterbalanced

16



J. Phys. A: Math. Theor. 41 (2008) 375203 U Schröter and E Scheer

(a)

(b)

Figure 8. Qualitative calculation of low-order contributions to the 1 → 0 decharging rate across
the right junction in a symmetric system with θ1 = θ2 = 0.5 for two different ratios EC : �. Insets
are magnifications of selected parts of some curves.

by an interference term of the same order. This interference term hindering decharging here
could lower the current in the coherent as compared to the incoherent model, but we cannot
expect any signs of crossed AR in current–voltage characteristics. For the symmetric case
with the island n = 0 state midway between L and R in potential, crossed AR in the n = 0
state—which would contribute hole transfer from R to I to the 1 → 0 decharging rate across
the right junction—is impossible. For the energy intervals, in which the processes sketched in
figures 7(b) and (c) take place, to exist, EC > �/2 is mandatory.

In figure 8 we plot contributions to the rate for changing the island charge between
0 and 1 across the right junction arising from the low-order terms given here and in [10].
The right lead is held at V , the left lead at zero potential. For simplicity we apply no gate
voltage and assume equal junction capacitances (onset thresholds as marked and singularity
positions as expressed in simple multiples of � and EC only hold for this symmetric case).
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Also equal transmissions are chosen (unequal tL and tR would change the absolute values
of the contributions, but not the positions of the peaks [11]). The potential of the neutral
island state n = 0 is situated midway between the lead Fermi levels. The n = 1 state is
2EC/e above that level. (In the symmetric case with equal junction transmissions the main
current contributions involve the island charge states nearest to zero.) From the potential
landscape we thus expect that in stationary current flow the island is decharged across the
right junction, that is electrons go off to the right lead. The Green’s functions method does
not add contributions order by order, the calculations displayed in figure 8 are made for purely
analytical purposes (singularities in g-functions have been cut to finite values for simplicity).
Single (A) electron transfers for 1 → 0 decharging start at eV = 4�−4EC , hole transfers join
at 4�. Next higher-order pure electron or hole multiple reflections (B), see (18), have the same
thresholds. Contribution (B) has opposite sign to (A). However, even without AR, the total
0 → 1 charging rate will be negative (island decharging), which is due to following higher
orders having alternate signs. In contrast to the Green’s functions method or analytic all-order
summations [16] in approximations up to a finite order the onset singularities can never cancel
correctly. The threshold for the 1 → 0 transition as part of an AR taking place in the right
junction only (D) is 2� − 4EC , which in figure 8(a) even corresponds to a negative voltage.
The contribution (C) from coherent transport over both junctions without eh-conversion, see
terms (20), indeed sets in at 2�. However, only in figure 8(b) with the smaller of the two
EC here do we get a negative rate corresponding to the desired direction of current flow. In
figure 8(a) the interference parts are stronger than direct lead-to-lead transport. In the electron
analog to figure 5 with the n = 1 island state the g-products from the respective dark grey
part can well give a larger contribution than those from all the light grey range between L and
R, even larger by more than the I-gap part from the holes in figure 5. Note further that an
alike situation is also found in figure 8(b) between about 4� − 4EC and 4�. Only at about
4� does the lead-to-lead coupling via the 0 and 1 island states change into a definitive flow
direction in any case. (The aforementioned direct lead-to-lead part in a total current–voltage
characteristic of the two-junction series for low charging energy plays on more than just the 0
and 1 island states.) As contribution (E) from terms of the kind (24) in figure 8(b) we get the
hole analog to figure 7(d) starting at 4� and the process as in figure 7(d) starting at 4� + 4EC .
As discussed, this contribution hinders decharging in the coherent model and accordingly has
positive sign here. The same two clear onsets are found in figure 8(a). However, there is a
small positive contribution already setting in at 4EC , and for lower voltages terms (24) even
produce a negative one. The former is the process shown in figure 7(c). The latter is crossed
AR, however, with the I n = 1 Fermi level above that of L (V < 4EC), which effectively
allows AR inside the island’s n = 1 gap [10]. Unfortunately, crossed AR helping to decharge
the island at such low voltages (peaked at 4� − 4EC due to singularity matching) is of no use
for establishing a stationary current all through the system as sufficiently effective up-charging
processes—they also have to outweigh the ‘wrong’ part of the crossed AR through the left
junction—require at least eV = 2� (4�− 4EC < 4EC and 4�− 4EC > 2� is impossible at
the same time). Our model does not at all regard spin polarization which might render crossed
AR [17, 18] much more interesting also in this system with the island changing in potential
with charging.

5. Frequency arguments and form of rate terms

In terms without AR only three frequency arguments occur, one for each site, which will
always be the same regardless of the number of reflections after which the particle comes
back to that site. Anyone of the three can be taken as the integration variable, we can have
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gRR(ω), gII (ω) or gLL(ω) as long as the choice is the same for all electron (hole) contributions.
Each site having the same argument in all pure electron and in all pure hole contributions of
an order contributing to the n → n + 1 island charging rate through a junction, is the only
absolutely necessary condition for mathematical consistency. Terms with AR discussed so
far only included one gLL and one gRR and the arguments of the two appearing gII came out
identical for (24). Higher-order MAR can contain different frequency arguments associated
with the same site. In terms with AR a consistent choice of frequency arguments would,
in principle, be unnecessary. They contain geh/he which become arbitrarily small for large
negative and positive ω. Thus with sufficiently wide boundaries there are no integral parts from
half-open intervals that could be incorrectly counterbalanced. However, for the integration of
these rather sharply peaked functions it seems important for numerical performance to have
integrands which cancel in the complete outer half-open intervals up to the gap edge where
individual contributions become singular. Besides that shifting argument sequences into the
same patterns was essential for our analysis to show how different kinds and orders of transport
processes are contained in the model. Nevertheless, there does not seem to lie any advantage
in using rates in the form (17) with the negative terms, as their contributions cancel against
others, anyway. One could use (10) caring to have gr

RR(ω) in the first and in the last term and
g+−

RR(ω) in the middle term and preparing the three kinds of transfer functions TLR, TRR and
TIR in Fourier space with R for reference site [12]. (The reference site is the second of the two
indices in representation (14). Using (15) without swapping r and a, n- and site indices on T in
the integral compared to T on the left side as well as without the †-conjugation would make it
the first.) For the trace it is of no importance that the σIR at the end of the second term in (10)
entered into TRR instead of being put in front as in (11). Thus in (10) from the product with
the 1 from the parenthesis, g+−

RRT a
RR is taken as an intensity. It looks awkward that in contrast

to g+−
II - and g+−

LL-parts with g+−
RR the contribution with no interaction points on one half of the

Keldysh contour (see figure 2) appears as a special term. Nevertheless, the following ansatz
seems a promising idea, for which we rewrite (10) such that only TRI/IR and TLI/IL appear:

gr
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r
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. (25)

To construct these T-functions the two-step procedure from [11] is only needed for one kind of
seed term. The functions can be used in rates for both junctions, none is calculated exclusively
for one side4. As integration variable ω, take the argument of g+−

LL in the first, the one of gr
RR in

the second and that of g+−
RR in the last two terms in (25). Then Fourier representations (14)/(15)

can be implied in a way to leave both T in products with two of them of the same argument and
furthermore only the need to establish TIR and TIL by recursion, because TRI and TLI are then
obtained by complex conjugation. To deal with T-functions of a unique argument at a time
is desirable to such a high degree, because even with all-order corrections the rate functions
exhibit sharp peaks and an adapted integration procedure works off arguments in a not a priori
determined sequence; storage of T for equally spaced ω would be of no use. In contrast to
(17) multiplication with single σ at the end of terms as in (25) will complicate a calculation by
requiring case differentiations for different components in eh-space. This has to do with the

4 Efficiency in setting up explicit code equations and optimizing computation time had indeed also been a motivation
for this ansatz prior to discovering the expression with all alike structured terms (17). Because harder to debug and
finally not giving different physics, we have not pursued this alternative option to the stage of having error-free codes
for calculating IV -characteristics. From trials and arguments given in the analysis of rate terms in this paper we,
however, strongly suspect that the compact form (17) should prove superior in numerical performance.
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Figure 9. Basic g-functions.

choice of frequency arguments in the terms as well as the truncation of the range of allowed
island charge states which both have to be consistent in the way all processes of the same order
get included. Without going into further detail on these points, the following check reveals an
inconsistency in the concept proposed with (25): we list the pure electron multiple reflection
contributions with 4σ and involving both leads. The island charge oscillates between n and
n + 1. As in (19) the one fixed frequency argument determines the others.
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(26)

A factor of t2
Lt2

R has as usual been omitted on the right side in (26). Term 1 stems from the first
term in (25), term 4 from the third and terms 2 and 3 from the second. The last term leaves no
possibility of creating a product with only 4σ containing gLL as well as gRR . Drawing plots
like in figure 4 would display the 2�- and surrounding intervals for term 1 shifted with respect
to those for the other three terms. The outer half-open intervals would no longer cancel as
they should for uniform integration boundaries. One could think about changing integration
boundaries for the first term of (25), however, that is quite cumbersome (and for products
with eh-conversion the shift would depend on the n-, k- and p-indices of the T involved). In
conclusion, our considerations proved that although requiring the calculation of T-functions of
more than two combinations of site indices, together with the rule to fix the reference argument
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with gRR for right-junction rates and with gLL for left junction rates, the form (17) of the rate
formula is the most robust and the easiest in handling.

6. Conclusions

We have developed a model to calculate quantum transport in the normal as well as the
superconducting state through two point-contacts in series with a bulky island between the
two junctions, where processes in both junctions are coherently coupled together, however,
the island in a classical way constantly changes its electrostatic potential with charging. The
model merges a Green’s functions technique taken from the treatment of the single junction
with arbitrary transmission and a rate-equation method known to describe the single-electron
transistor. This paper showed how to derive the formula for single-unit charging rates of the
island through each junction in the situation with coherence maintained over the whole system.
In analogy to the single junction these rates can be written as sums of 2-products of transfer
functions. The established rate formula reveals that besides the direct coupling of a lead to
the island there is an effective coupling of that lead to the remote reservoir which is the other
lead. Technical details have been given concerning the precarious issue of keeping consistent
energy reference levels in calculating transfer functions and charging rates. For analysis
developing low-order contributions in transfer rates uncovers how intricately coherence and
charging are linked. The direct lead-to-lead transport does not require intermediate states
outside the superconductor gap on the island, Coulomb blockade may nevertheless suppress it.
Crossed Andreev reflection is also contained in the calculation, however—within the premises
of our model—does not produce additional features in current–voltage characteristics. Here
we concentrated on the usage of Green’s functions in charging rates. Current–voltage curves
for the superconducting state are shown in [14]. Most important extensions to render the model
more realistic and general will be the inclusion of Cooper-pair tunneling and the treatment of
several transport channels per junction all coherently linked across the island.

Appendix

To help the interested reader reconstruct all interval analysis of the discussed low-order rate
terms and eventually investigate others, we here schematically display all components of the
g-functions. The vertical lines mark the 2�-interval the respective function is centered in.
Inside this interval all values are purely real, outside all are purely imaginary. Thus positive or
negative values indicate signs of Re and Im, respectively. g+− vanishes in the central interval
and outside is just twice as large as gr or ga .
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